If it's not what You are looking for type in the equation solver your own equation and let us solve it.
200=-16t^2+115t
We move all terms to the left:
200-(-16t^2+115t)=0
We get rid of parentheses
16t^2-115t+200=0
a = 16; b = -115; c = +200;
Δ = b2-4ac
Δ = -1152-4·16·200
Δ = 425
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{425}=\sqrt{25*17}=\sqrt{25}*\sqrt{17}=5\sqrt{17}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-115)-5\sqrt{17}}{2*16}=\frac{115-5\sqrt{17}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-115)+5\sqrt{17}}{2*16}=\frac{115+5\sqrt{17}}{32} $
| 4+x=−0.5(x−1)+0.5 | | -2=4x+4x-10 | | (15-n)4=7 | | 4+x=−1/2(x−1)+1/2 | | 3x+5=475 | | 13=0.06x | | 1x-4=x-4 | | 20s+4=13s-16 | | 13x~23=4x+13 | | 3a+5-2=6 | | n+2n-n=6 | | 510-5n-10=50 | | (2x*2x)+(x*x)+((x*x)/2)=153 | | `-2x-8=10` | | 12b-6b+2b-2b-3b=18 | | m+17=4 | | u+-10=-809 | | x-6÷2+5=9 | | Y+20+2x+40=180 | | 10q-13q-q-6q=18 | | x÷15=64 | | x-2;x=10 | | 2x+4Y=-84 | | -4(7x+2)=17-3x | | 1/9x-5=5/9x+7 | | 16x=–2 | | x+3;x=2 | | 5x+76+9x-8=180 | | 48/6=r | | 16p-14p=10 | | x^2+10*48=48x+480 | | 10g-3g+4g+3g-13g=15 |